
Decentralized Identifiers: Implications for Your Data, Payments and Communications

Impervious Technologies Inc. (impervious.ai)

3.21.2022

Abstract

Decentralized Identifiers (DIDs) are user-controlled, can be globally persistent and are generated
or registered cryptographically. A DID consists of a Uniform Resource Identifier specified in and
used to resolve a DID document. An entity with write-privileges called a controller inputs the
specifications describing a DID subject into a DID document. The DID Specification enables a
controller to improve DID resiliency by listing multiple service endpoints and transport
pathways. These specifications and their resulting resilience form the basis of
DIDCommunications (DIDComm).

DIDComm offers communication options regardless of protocol or transport layer, enabling
users to communicate without hosting their own listening servers online. DIDComm mediators
act as relays that receive an onion-encrypted message from a sender (or another previous
mediator in a chain) and pass this message on to another party. Relays are transport agnostic and
can be used with any desired transport layer, including Lightning, HTTP, TOR, webRTC or
WebSockets. DIDs make reliable direct payments possible by abstracting an identity layer from
the public address of Lightning nodes.

Through the DID Specification, service endpoints and DIDComm, Impervious has interlaced
DIDs with Bitcoin Lightning, IPFS, WebRTC and resilient relays to introduce a new peer-to-peer
internet standard with practical applications for mitigating censorship and surveillance risk.

Introduction to Decentralized Identifiers

Decentralized Identifiers (DIDs) are cryptographic and verifiable, do not require centralized
registries or certificate authorities and can be globally unique and persistent. DIDs can be
tailored for different contexts, used to reinforce pseudonymity or leveraged to port attributes
between identities. This technology aims to solve many ills on the internet today, from
intermediary control of identity to surveillance at successive layers of the technology stack.

A DID can identify any subject (e.g., person, organization, data model, abstract entity, etc.) based
on its controller, which has DID document write-privileges. A DID document specifies the
syntax, common data mode, core properties, serialized representations, operations and an
explanation of the DID resolution process. A DID is represented by a Uniform Resource
Identifier (URI) for trustable interactions between a DID subject and a DID document. A DID is
verified by associating a DID document and URI and can be universally resolvable with DID

1

https://impervious.ai

methods such as the Microsoft ION Sidetree protocol <https://github.com/decentralized-identity/
ion>.

DIDs consist of a URI string used to resolve a DID document with information that describes the
identity’s subject.

A DID document may include authentication keys, service endpoints, a short-name alias, free-
form text and other attributes as specified by the controller. Use cases can also be implemented
without a protocol modification by updating a DID document.

The URI resolves to a DID document based on the implementation of the specific DID method.
This infrastructure could be a web server (similar threat model to current URL API calls), peer-
to-peer discovery, anchor to the Bitcoin blockchain, IPFS or custom implementation devised by
the controller. The DID Specification enables a controller to add or update information within a
DID document, improving the utility of a DID and enabling DIDCommunications (DIDComm).

The DID Specification

The DID Specification enables a controller to maximize decentralization by inputting additional
information into a DID document. It meets the core attributes of an optimal decentralized
payment and communications network. The DID Specification is updatable and open-standard
and is redundant and resilient with fallback nodes, fallback on-chain addresses and alternative

2

DID Document

{  
 "@context": [ 
 "https://www.w3.org/ns/did/v1",  
 "https://w3id.org/security/suites/ed25519-2020/
v1"  
]  
 "id": "did:example:123456789abcdefghi",  
 "authentication": [{  
 // used to authenticate as did:...fghi  
 "id": "did:example:123456789abcdefghi#keys-1",  
 "type": "Ed25519VerificationKey2020",  
 "controller": "did:example:123456789abcdefghi",  
 "publicKeyMultibase":
"zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"  
 }]  
}

pathways to receive data or payments through a custodian. A DID is a static string that can
function as a QR code for ease of use.

A controller may specify service endpoints in a DID document by listing the applications,
features and functions a DID can support. The DID Specification for service endpoints allows for
choosing the transport path, message type and method used to perform payment actions. A
network of users may also select a subnet configured for their particular needs.

DID Service Endpoints

Service endpoints can be application-specific data stores (e.g., Tweets), IPNS links or any other
protocol. Moreover, a DID can support several specified service endpoints. A DID document
specifies the broadcast method and claims ownership over a personal domain, as shown in the
following code example:

A DID document must include all metadata necessary for the respective service endpoint type.
Service endpoints can be duplicated and hosted across multiple providers (URLs) for enhanced
resilience. A controller can specify which service endpoint receives message information, either
through code or configuration. See the W3C DID Specification Registries (working) for a
standardized list of service endpoints and supporting appropriate documentation:
https://www.w3.org/TR/did-spec-registries/#service-types.

3

DID Document Specifies a Service Endpoint

{ 
"service": [ 
 {  
 "id":"did:example:123#free",  
 "type": "LinkedDomains",  
 "serviceEndpoint": {  
 "origins": ["https://free.example.com", “https://
identity.foundation"]  
 }  
 },  
 {  
 “id":"did:example:123#dom",  
 "type": "LinkedDomains",  
 "serviceEndpoint": "https://dom.example.com"  
 }  
]  

https://www.w3.org/TR/did-spec-registries/#service-types

Service endpoints are not only an example of the utility and flexibility that DID documents
provide, but also a critical characteristic of higher-order decentralized applications that rely on
DIDComm.

DIDComm

DIDComm is a secure, private communications layer built on top of the decentralized properties
of a DID. DIDComm Messaging accrues the decentralization benefits to a network of connected
identifiers with a particular set of specifications. While a range of secure messaging protocols
exists, most require trusting a centralized authority to issue identities, register keys and delegate
certificate authorities. Furthermore, most legacy messaging protocols rely on a single transport
mechanism. Centralized systems often sacrifice security to gain convenience and are limited by a
lack of interoperability. DIDComm Messaging relegates centralized messaging protocols and
dependent systems.

DIDComm uses service endpoints and public keys located in the DID document to enable
communication between DIDs. Signing, authentication and authorization are derived from a DID
and are therefore inherently decentralized. DIDComm optimizes for resilience and utility while 1

providing individual discretion of the preferential communication protocol or transport layer.
DIDComm messages are easy to understand as they utilize the same message formatting and
parsing as a DID document. The receiver can set priorities to manage optimal message delivery.

In the following example, three target services are listed:

1. The lightning node pubkey, specified as LNPubkey to support Keysend and AMP.

2. A DIDComm Messaging service, listening for POST requests sent to the http://example.com/path.2

3. A DIDComm Messaging service over Lightning payments. 3

 Decentralized Identity Foundation, https://identity.foundation/didcomm-messaging/spec/.1

 The receiver can and should configure message protocols to eliminate spam.2

 For Lightning based DIDComm, they may set a minimum Satoshi amount for message processing.3

4

https://identity.foundation/didcomm-messaging/spec/

The specific DIDComm service endpoint above allows for receiving messages despite the sender
not having access to a Lightning node. In addition, the receiver can set a priority as to which
other service endpoint or communications method they prefer. This functional utility inherent in
DIDs can be improved by implementing mediators or relays to ensure offline communication and
traffic resilience.

DIDComm Mediators: Introduction to Relays

DIDComm allows users to communicate without hosting their servers online. Mediators receive 4

an onion-encrypted message from a sender (or a previous mediator in the chain) and relay this
message to another party. A mediator cannot assess whether the recipient is another relay or the
intended recipient, and they cannot access message content since it is encrypted with the
recipient’s public key. Delivery methods are transport agnostic and should be coordinated
between the receiver and the designated mediator. In addition, a mediator can push mobile or
email notifications or store the encrypted messages and wait for the receiver to fetch them
directly when they are offline.

 https://identity.foundation/didcomm-messaging/guide/#mediators-and-relays4

5

DIDComm

{
"service": [
 {
 "id":"did:example:123#LNPubkey",
 "type": "LNPubkey",
 "serviceEndpoint": "lightning:abc123..."
 },
 {
 "id": "did:example:123#didcomm-1",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "http://example.com/path",
 },
 {
 "id": "did:example:123#didcomm-2",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "did:example:123#LNPubkey",
 }
]
}

https://identity.foundation/didcomm-messaging/guide/#mediators-and-relays

DIDComm mediator properties enable evolutionary advances in secure and decentralized
communications and in Bitcoin Lightning payments by securely routing messages and payments
to recipients, even if they are temporarily offline.

DIDComm as a Lightning Transport Method

Lightning transports data via IP or TOR TCP sockets, and payments are routed by pubkeys,
which are gossiped across the Lightning network. DIDs and DIDComm-based messaging can be
added as alternative ways to communicate with nodes. Additionally, WebSockets, mediators,
pubkey swaps, fallback nodes or communication servers can be implemented native to the
network. As a transport option for Lightning payments, DIDComm improves adaptability and
future-proofs the protocol. The following sections discuss how IP/TOR/Pubkeys can be
referenced inside a DID to replicate Lightning features and make these resilient.

Keysend/AMP

Keysend and AMP allow for ad hoc payments by sending them directly to the destination node’s
public key. This payment method does not require an invoice. In the example below, the
serviceEndpoint URI is the lightning prefix followed by the node pubkey.

6

 {  
"service": [ 
 {  
 "id":"did:example:123#LNPubkey",  
 "type": "LNPubkey",  
 "serviceEndpoint": "lightning:abc123..."  
 }  
]  
}

 {

"service": [
 {
 "id": "did:example:123#didcomm-1",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "did:example:somemediator",
 },
]
}

LNURL

Lightning URL (LNURL) is a service endpoint inside the DID document. The benefit of
abstracting LNURL—also an abstraction layer—is that it does not need to solely depend on IP
addresses or domain names. The LNURL location can be updated as needed without affecting
payers. In the example above, there could be a list of multiple origins for LNURL.

In the next example, the serviceEndpoint URI is the lightning prefix followed by the LNURL
encoded string <https://github.com/fiatjaf/lnurl-rfc/blob/luds/06.md>.

Offers

Offers are improved static invoices that enable ad hoc payments through a generic, non-amount-
dependent bolt12 payment string <https://github.com/lightning/bolts/pull/798>. To support
offers, recipients can simply create a bolt12 payment string and then add it as a service endpoint.
The serviceEndpoint URI consists of the lightning prefix followed by a bolt12 encoded string.

7

{
"service": [
 {
 "id":"did:example:123#LNOffers",
 "type": "LNOffers",
 "serviceEndpoint": "lightning:lno1qcp...."
 }
]
}

{ 
"service": [ 
 {  
"id":"did:example:123#lnurl-pay",  
 "type": "LNURL-Pay",  
 "serviceEndpoint": "lightning:LNURL..."  
 }  
]  
}

https://github.com/fiatjaf/lnurl-rfc/blob/luds/06.md
https://github.com/lightning/bolts/pull/798

Custodians

Custodians add convenience to the secure and decentralized attributes of DID mediators or
relays. DID mediator properties enable a standard for custodians to accept Lightning deposits on
behalf of a recipient. This protocol is similar to a banking wire transfer protocol, with recipient
information attached via Type-Length-Variable (TLV). The front-end of applications that
understand specific custodians can open the profile in another browser tab. Back-ends that
understand the API for specific custodians can make the payment through these URLs.

The serviceEndpoint URI links to the component of the custodian’s code that provides a specific
service to the recipient (e.g., message forwarding, Lightning deposit, other service endpoint). A
controller specifies a particular custodian using the “type” argument in the “service” function.
The type argument can be a URL, DID, or Lightning pubkey that has been delegated as the
user’s custodian. This can be particularly useful when a Lightning node is not always online but
a friend or custodian is.

BIP47 and Paynyms

Paynyms allow on-chain payments to a pseudonymous username (i.e., “paynym”). A new address
is generated using BIP47 each time a payment is made to preserve on-chain privacy and
transaction security.

There are two options for interacting with paynyms. The first displays a specific BIP47 payment
code directly to the payer, while the second stores the paynym URL in a public directory.

For BIP47, the serviceEndpoint URI is the prefix BTC followed by the BIP47 payment code.
The serviceEndpoint URI is the paynym URL for a given user’s registered paynym. Paynyms are
a resilient and secure way to conduct payments, but another approach is to use a designated on-
chain address.

8

{
"service": [
 {
 "id":"did:example:123#Strike",
 "type": "Strike",
 "serviceEndpoint": "https://strike.me/username"
 }
]
}

On-Chain Address

A static Bitcoin address can also be provided as payment information. In this case, the
serviceEndpoint is BTC followed by the address. When advanced functionality such as running a
Lightning node becomes too complex, another choice is to use a normal Bitcoin address. There is
wide support for sending and receiving bitcoin to a normal on-chain address. However, due to
privacy implications when reusing addresses for multiple purposes, on-chain addresses should
mainly be a fallback payment option.

9

{  
"service": [ 
 {  
 "id":"did:example:123#BIP47",  
 "type": "BIP47",  
 "serviceEndpoint": "BTC:PM8T..."  
 },  
 {  
 "id":"did:example:123#Paynym",  
 "type": "Paynym",  
 "serviceEndpoint": "https://paynym.is/+username"  
 }  
]  
}

 {  
"service": [ 
 {  
 "id":"did:example:123#Bitcoin",  
 "type": "Bitcoin",  
 "serviceEndpoint": "BTC:bc1..."  
 }  
]  
}

Bitcoin Payment Metadata

For each service endpoint payment type, optional metadata can be added to specify a receiver’s
preferences. This can include the priority and the minimum/maximum number of Satoshis (sats).

Priority

For payment options, a proposal for how the recipient prefers to get paid is as simple as setting
the parameter “priority": 1.

10

{
"service": [
 {
 "id":"did:example:123456789abcdefghi#LNPubkey",
 "type": "LNPubkey",
 "priority": 1,
 "serviceEndpoint": "lightning:abc123..."
 },
 {
 "id":"did:example:123456789abcdefghi#BIP47",
 "type": "BIP47",
 "priority": 2,
 "serviceEndpoint": "BTC:PM8T..."
 },
 {
 "id":"did:example:123456789abcdefghi#Bitcoin",
 "type": "Bitcoin",
 "priority": 3,
 "serviceEndpoint": "BTC:bc1..."
 }
]
}

Min/Max

A minimum/maximum sats amount can be specified by setting the parameter “minAmountSat": 1
and “maxAmountSat": 100000. Msat and BTC could be supported as well.

Lightning Communication

Several Lightning based communications applications rely on Keysend/AMP to attach messages
to the payment TLV records. One existing issue for any decentralized communications method
involves determining whether a specific Lightning node is online and listening. Service
endpoints can be used to signal the Lightning node status. By resolving a recipient’s DID, a
caller may learn the status, payment and messaging information for their desired Lighting node.

11

{
"service": [
 {
 "id":"did:example:123456789abcdefghi#LNPubkey",
 "type": "LNPubkey",
 "maxAmountSat": 1000000,
 "serviceEndpoint": "lightning:abc123..."
 },
 {
 "id":"did:example:123456789abcdefghi#BIP47",
 "type": "BIP47",
 "minAmountSat": 1000000,
 "serviceEndpoint": "BTC:PM8T..."
 },
 {
 "id":"did:example:123456789abcdefghi#Bitcoin",
 "type": "Bitcoin",
 "minAmountSat": 1000000,
 "maxAmountSat": 5000000,
 "serviceEndpoint": "BTC:bc1..."
 }
]
}

In the example below, the recipient has their desired Lightning node pubkey specified as
LNPubkey and is listening to Sphinx and Impervious messages.

The service endpoint is the method used to communicate with destinations by referencing the
pubkey directly from within the DID document. The type identifies the application listening to
these messages, each of which may require their own message protocol or TLV records
according to that application’s standard.

Lightning Mailboxes

DIDComm mediators provide an avenue for two parties to coordinate payments, even if one is
temporarily offline by delegating a fallback:

If a DID sender wants to pay via Lightning to a DID recipient who is currently offline but has
a delegated mediator as a fallback, the sender can send a message to their mediator. This
message would contain payment details such as “DID:xyz tried to pay you 10000 sats.” Once
they are online and pull this message from the mediator, the sender can contact DID:xyz to
request payment again.

This method informs the recipient that a Lightning payment was missed. In addition, DIDComm
mediators offer advanced functionality such that upon Lightning payment transmission to an
offline node, this payment is routed to a receiver-designated mediator. Next, a secondary
message is sent out of band (txt, email, etc.) alerting the recipient of a missed payment. The user

12

{  
"service": [ 
 {  
 "id":"did:example:123#LNPubkey",  
 "type": "LNPubkey",  
 "serviceEndpoint": "lightning:abc123..."  
 },  
 {  
 "id":"did:example:123#Sphinx",  
 "type": "Sphinx",  
 "serviceEndpoint": "did:example:123#LNPubkey"  
 },  
 {  
 "id":"did:example:123#Impervious",  
 "type": "Impervious",  
 "serviceEndpoint": "did:example:123#LNPubkey"  
 }  
]  
}

is then able to bring their Lightning node online, which alerts the designated mediator to receive
payment. DIDComm can use the Lightning Network as a transport layer for a pure Bitcoin Layer
2 experience.

Well Known DID and DID DNS

The LNURL protocol (https://lightningaddress.com) has been popularized as a method for
human-readable email addresses for making payments. LNURLs utilize the well-known txt
record of a domain in order to return a LNURL-pay compatible payload specific to a particular
username under the /.well-known/ URI. A similar protocol exists for DIDs called the “Well
Known DID” (https://identity.foundation/.well-known/resources/did-configuration/). Well
Known DIDs provide human-readable addresses for payments and messages.

The “alsoKnownAs” field (https://www.w3.org/TR/did-core/#also-known-as), which can be
specified in a receiving party’s DID document, can be used in conjunction with Well Known
DIDs to prove the common identity of a DID and URL.

In addition, the IETF has proposed a DNS for DIDs (https://www.ietf.org/archive/id/draft-
mayrhofer-did-dns-05.txt). This proposal is designed to achieve the same effect as Well Known
DIDs and represents another competitor for a DID URI standard as well as a redundant service
endpoint that the controller may include to make a DID document more robust.

Example: _did.example.net. IN URI 100 10 “did:example:1234abcd"

The Impervious Browser: A Revolutionary Application of Decentralized Identity

DID is the cornerstone of the peer-to-peer web, and the Impervious Browser makes peer-DIDs
accessible for everyone. These enable a range of functions, from messaging to video
conferencing, live document editing and content monetization. The following two scenarios
involve Impervious DIDComm between two hypothetical users (Alice and Bob).

In each scenario, Alice opens a chat box to message Bob. The Impervious Browser prepares a
plaintext JSON message. The Impervious Daemon checks to see if Bob’s DID document is saved
on the Daemon itself, checks a public DID-resolver URL or as a fallback checks Microsoft ION.
The Impervious Daemon accesses two pieces of information and then returns to Alice: a service
endpoint for messages to be delivered to Bob and the public key that Bob’s agent is using in the
Alice-to-Bob relationship. Next, Alice’s browser uses Bob’s public key to encrypt the plaintext
messages so that only Bob’s browser with that particular DID can read it. Alice’s browser also
adds authentication with its own private key.

13

https://lightningaddress.com
https://identity.foundation/.well-known/resources/did-configuration/
https://www.w3.org/TR/did-core/#also-known-as
https://www.ietf.org/archive/id/draft-mayrhofer-did-dns-05.txt
https://www.ietf.org/archive/id/draft-mayrhofer-did-dns-05.txt

Scenario 1: Alice and Bob are online

The browser arranges delivery to Bob directly, using either the Lightning Network, HTTP or
TOR. Bob’s browser receives and decrypts the message and authenticates its origin using 5

Alice’s public key. Bob’s browser searches for Alice’s key and an appropriate service
endpoint in her DID document. Bob’s browser then routes a response by encrypting the
plaintext message, adding authentication with his private key and coordinating delivery via
the available transport method and service endpoint.

Scenario 2: Alice or Bob are offline

Alice attempts to contact Bob based on the prioritized communication channel specified in
Bob’s DID document, but this fails because his server is offline. Therefore, the browser
arranges delivery to Bob via a DID mediator (also known as a “relay”), using either the
Lightning Network, HTTP or TOR. When Bob comes back online, his Impervious Daemon
connects to the mediator and retrieves messages. The relay does not have access to message
content, as it is encrypted to Bob’s public key. In this case, the mediator acts as a mailbox for
Bob. If Bob has a pre-negotiated service endpoint (i.e., email address, Lightning Address,
etc.), the mediator network acts as a forwarding service.

At launch, the Impervious Daemon will employ DID Specification service endpoints, DIDComm
and mediators to provide the core peer-to-peer and encrypted functionality of the Impervious
Browser. In future Impervious Browser versions, DID Specification will improve the usability
and resilience of the Lightning network. The novel use of DIDs covered in this paper addresses
the potential of this technology to weave the fabric of a new peer-to-peer internet standard,
enabling everyone to mitigate the risk of censorship and surveillance.

Complete Code Example

A DID document includes:

• Personal domain ownership
• Owning two nodes: the user’s preferred method of payment under 1M sats
• An LNURL endpoint supporting pay requests
• Supporting bolt12 offers with a generic donation invoice
• BIP47/paynym as a privacy preserving fallback payment method
• A static bitcoin address as a fallback payment method after paynyms
• A custodial service as a last resort payment method
• Impervious and Sphinx running off both LN nodes

 TOR pending v.1.02 update. Expanding to WebRTC and WebSockets. 5

14

• Supporting DIDComm on a user-owned HTTP server, user-owned LN node and mediator
HTTP relay when a user is offline

The following example shows a DID document utilizing all payment and communication service
endpoints covered throughout this paper.

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
],
 "id": "did:example:123456789abcdefghi",
 "service": [
 {
 "id": "did:example:123456789abcdefghi#blog",
 "type": "LinkedDomains",
 "serviceEndpoint": "https://myserver.com"
 },
 {
 "id":"did:example:123456789abcdefghi#LNPubkey",
 "type": "LNPubkey",
 "priority": 1,
 "maxAmountSat": 1000000,
 "serviceEndpoint": ["lightning:abc123...",
"lightning:xyz987..."]
 },
 {
 "id":"did:example:123456789abcdefghi#lnurl-pay",
 "type": "LNURL-Pay",
 "serviceEndpoint": "lightning:LNURL..."
 },
 {
 "id":"did:example:123456789abcdefghi#LNOffers",
 "type": "LNOffers",
 "serviceEndpoint": "lightning:lno1qcp...."
 },
 {
 "id":"did:example:123456789abcdefghi#BIP47",
 "type": "BIP47",
 "priority": 2,
 "serviceEndpoint": "BTC:PM8T..."

15

 },
 {
 "id":"did:example:123456789abcdefghi#Paynym",
 "type": "Paynym",
 "priority": 2,
 "serviceEndpoint": "https://paynym.is/+username"
 },
 {
 "id":"did:example:123456789abcdefghi#Bitcoin",
 "type": "Bitcoin",
 "priority": 3,
 "serviceEndpoint": "BTC:bc1..."
 },
 {
 "id":"did:example:123456789abcdefghi#Strike",
 "type": "Strike",
 "priority": 4,
 "serviceEndpoint": "https://strike.me/username"
 },
 {
 "id":"did:example:123456789abcdefghi#Sphinx",
 "type": "Sphinx",
 "serviceEndpoint": "did:example:123#LNPubkey"
 },
 {
 "id":"did:example:123456789abcdefghi#Impervious",
 "type": "Impervious",
 "serviceEndpoint": "did:example:123#LNPubkey"
 },
 {
 "id": "did:example:123456789abcdefghi#didcomm-1",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "http://example.com/path",
 "priority": 1,
 "accept": [
 "didcomm/v2",
 "didcomm/aip2;env=rfc587"
]
 },
 {

16

 "id": "did:example:123456789abcdefghi#didcomm-2",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "did:example:123#LNPubkey",
 "priority": 2,
 "minAmountSat": 100,
 "accept": [
 "didcomm/v2",
 "didcomm/aip2;env=rfc587"
]
 },
 {
 "id": "did:example:123456789abcdefghi#didcomm-3",
 "type": "DIDCommMessaging",
 "serviceEndpoint": "http://somemediator.com/path",
 "priority": 3,
 "accept": [
 "didcomm/v2",
 "didcomm/aip2;env=rfc587"
],
 "routingKeys": ["did:example:somemediator#somekey"]
 }
]
}

See Impervious Technologies Inc.’s Github to reference example code snippets:

Impervious Technologies: Decentralized Identifiers ("DID") Spec

https://github.com/imperviousai/specs/blob/main/did-usage.md

Copyright Ⓒ 2022 Impervious Technologies Inc.

17

https://github.com/imperviousai/specs/blob/main/did-usage.md

	Decentralized Identifiers: Implications for Your Data, Payments and Communications
	DIDComm as a Lightning Transport Method
	Keysend/AMP
	LNURL
	Offers
	Custodians
	BIP47 and Paynyms
	On-Chain Address
	Bitcoin Payment Metadata
	Priority
	Min/Max
	Lightning Communication
	Lightning Mailboxes

	Well Known DID and DID DNS
	Complete Code Example

